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It was shown by Newell in 1962 that  the extreme value and first passage 
time distributions of various types of common Markov processes asymp- 
totically approach those for independent  random variables. In view of the 
great simplification this occasions in the calculation of a number  of im- 
portant  properties of Markov processes, it is clearly of interest to determine 
in some detail the conditions on both  the time and space variables under 
which this equivalence holds. In this paper we investigate and establish 
these conditions for Markov processes described by the Fokker-Planck 
equation and express them in simple analytic forms which are directly 
related to the coefficients of the Fokker-Planck equation. To demonstrate 
the usefulness of these conditions, we apply them to two representative 
examples of Fokker-Planck equations, the Ornstein-Uhlenbeck process and 
the Montrol l -Shuler  model for harmonic oscillator dissociation. It is shown 
very clearly in these examples that the extreme value and first passage time 
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distributions, and thus the mean extreme and mean first passage times, of 
these Markov processes approach very closely those for independent 
random variables at finite values of the time and space variables. 

KEY W O R D S :  Markov processes; independent random variables; 
Fokker-Planck equation; Ornstein-Uhlenbeck equation; extreme value 
distributions; first passage time distributions; mean maxima; mean first 
passage times. 

1.  I N T R O D U C T I O N  

Most previous work on the theory of extremes in probability theory deals 
with independent random variables in discrete time. 4 Physical processes, 
however, frequently involve dependent random variables in continuous time. 
I t  is thus of  interest and importance to extend the theory of extremes to de- 
pendent variables in continuous time. This paper is concerned with such an 
extension to a specific class of  Markov processes. 

The theory of extremes is the study of the distribution of the extreme 
values (maximum or minimum) of a random variable within a given time 
interval. The distribution of extreme values is closely related to the distribu- 
tion of first passage times of the random variable to a prescribed boundary. 

Some properties of  extreme value distributions for Markov processes 
have been investigated previously33-7~ In Ref. 4, Newell discusses the asymp- 
totic extreme value distribution for one-dimensional processes, addressing 
himself particularly to the question "as  to which of the common types of  
Markov processes give rise to extreme value distributions like those obtained 
for independent identically distributed random variables." 

The calculation of extreme value distributions and their moments  for 
Markov dependent variables is invariably a much more difficult task than the 
calculation of these properties for independent random variables. I t  is reason- 
able to expect, however, that the extreme values of  a Markov dependent 
random variable within a given time interval themselves form a set of  inde- 
pendent random variables if the time interval is sufficiently long. This assump- 
tion has been adopted by Gumbel  C1~ and other workers. Thus, for instance, 
when considering the problem of maxima of levels in a river over a period of 
many years, Gumbel  makes the assumption that the set of  observations of  
these maxima in a given interval of  time forms a set of  independent random 
variables if this time interval is sufficiently long, say one year. This is certainly 
a reasonable assumption. Even though the maximum heights of the river are 
strongly correlated variables if observations are made within 10-rain inter- 

4 Gumbel~l~ gives a very useful survey of the subject and its history through 1958. See 
David C2~ for more recent work. 
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vals, one would certainly expect that this correlation has completely dis- 
appeared as the observation interval is extended to one year. It is of interest 
to know how rapidly these correlations decay in a Markov process so that one 
can calculate, rather than guess, time intervals for which the assumption of  
independent random variable behavior of the extreme values is valid. 

A stochastic process with independent random variables can be charac- 
terized by the simple functional form of the probability F(f ,  t) that the process 
stays below ~: throughout the time t. This form is F(f ,  t) = exp[-A(() t ] ,  
where the function A(~:) is related to the statistical distribution of the random 
variables and is hence dependent on the details of the process. From this 
distribution, moment properties can be calculated. The mean first passage 
time to ~:, for instance, is given by TI(~) = [h(~)] -1. The mean maximum of 
the process is also simply related to F(s e, t). The probability F(~:, t) and its 
moments for a Markov process are much more complicated and in general 
difficult to calculate. After a sufficiently long time t and for sufficiently large 
values of the variable ~:, the Markovian probability function F(~, t) is well 
approximated by exp[-~o(~:)t], the simple form characteristic of an in- 
dependent random variable process. The function Ao(s e) depends on the 
details of the Markov process but is much simpler to evaluate than the 
exact probability F(~:, t). Approximate moment properties can again readily 
be obtained; for instance, the mean first passage time to ~: is TI(~:) 

[,~o(~:)1 - 1. 
It is thus of importance to determine conditions on both the time and 

space variables for which extreme value distributions and their moments in 
Markov processes approach the behavior characteristic of processes of inde- 
pendent random variables, since calculations are then greatly simplified. In 
this paper we investigate and establish such conditions for the class of Markov 
processes that obey a Fokker-Planck equation. We find such conditions and 
express them in forms which can be directly related to the coefficients in the 
Fokker-Planck equation. These conditions are then tested for two particular 
processes, namely the Ornstein-Uhlenbeck (OU) process (8~ and the Montroll-  
Shuler model (9~ for harmonic oscillator dissociation in the high-temperature 
limit. (1~ It is shown in these examples that the extreme value and first 
passage time distributions of these Markov processes approach very closely 
those for independent random variables at finite values of the time and space 
variables. 

In Section 2 we present the necessary definitions and general expressions 
for first passage time and extreme value distributions and their moments. 
In Section 3 results for independent random variables are briefly reviewed. In 
Section 4 we consider the general Fokker-Planck equation and establish 
conditions for approach to independent random variable behavior. These 
conditions are tested on the Ornstein-Uhlenbeck equation, for which detailed 
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numerical  calculations are presented in Section 5, and  on the ha rmonic  
oscillator dissociation equat ion in Section 6. 

2. D E F I N I T I O N S  

In  this section we define the functions and  processes to be studied in the 
b o d y  o f  this paper .  

We limit our  considerat ions to one-dimensional  M a r k o v  processes with 
r a n d o m  variables Z ( t )  defined for  cont inuous time. Let  f ( x ,  t IXo)dx be the 
probabi l i ty  tha t  X(t)  lies within (x, x + dx) without  ever having crossed 
x = ~ in t ime (0, t), given X(0) = x0. As will be seen below, all quanti t ies 
relevant  to the theory of  extremes can be expressed in te rms of  the probabi l i ty  
density f ( x ,  t Ix0). 

Define a new r a n d o m  variable 

Z( t )  - max{X(~),  0 ~< ~- ~< t} (1) 

Then the cumulat ive distr ibution function,  defined by  

F( f ,  tlXo ) =- d x f ( x ,  t]Xo) (2a) 

has the probabil is t ic  meaning  

g(~, t lXo ) = Prob{Z(t)  < ~]X(0) = Xo} (2b) 

where x - - r  denotes a reflecting bounda ry ;  r may  be finite or negative 
infinite, with r ~< Xo < f. The  funct ion F is useful when treat ing m a x i m a  
problems.  Min ima  prob lems  can be treated similarly but  then ~: < x0 ~< r 
with r finite or posit ive infinite. 

An impor tan t  r a n d o m  variable is the t ime r when the process crosses 
x = ~ for  the first t ime, i.e., the first passage t ime 

T(~:) - m in{ r lX( r  ) = ~:} (3) 

Sihce F(~, t ]Xo) is the probabi l i ty  tha t  X(7) never crosses x = ~ during the 
t ime 0 ~< r ~< t, it can be related to the first passage time. F r o m  Eqs. (2b) and  
(3) we find 

F(~, tlXo) = Prob{T(~) > t IX(0) = Xo) (4) 

Two more  useful definitions are 

W'(~:, tlxo) d~: = [(019~)F(~, tlxo)] d~: 
= Prob{~: < Z( t )  < ~: + d~lX(0) = Xo} (5) 

W(~, t lXo ) dt - - [(O/ot)r(~, t lXo) ] dt 
= Prob{t < T(~) <~ t + dt[X(O) = xo} (6) 
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The functions f ,  F, ' f ,  and q~ are Green's functions for processes with 
arbitrary initial distributions. They can be averaged over any initial distri- 
bution 71(xo): 

Jr F(~, t) -~ dxo ~(xo)F((,  t[Xo) 

= Prob{T(~:) > t) = Prob{Z(t) < ~:} (7) 

tF($, t) =- dxo 7/(Xo)XF(s r t[Xo) = (O/O~)F(~, t) (8) 

*(~, t) --- dxo ~(x0)~(~, t lxo) = - ( 8 / O t ) f ( f ,  t) (9) 

Using these distribution functions, one can now write down moments, 
i.e., various mean properties, such as, for instance, the mean maximum of the 
variable X ( t )  in a given time interval (0, t) or the mean first passage time to 
x = ~:. We define the nth moments of Z(t) and T(~) by 

Z=(tlXo) - d~ ~:"~F(~:, tlXo) 

= r" + n d~ ~"-~[1 - f ( f ,  t lXo)l  (10)  

T,(flXo) -= dt t "O( f ,  tlXo) = n dt t " - lF(~ ,  tlXo) (11) 

Moments with respect to an initial distribution ~(x0) will be denoted by 
Z~(t)  and T,(8). The quantity Z l ( t )  is then the mean maximum of the process 
in the time interval (0, t); the variance of the maximum in this time interval is 
Z2(t)  - Z1Z(t). The mean first passage time to x = ~ is TI(~:) and its variance 
is T2(~:)- T12(~:). The corresponding conditional quantities are similarly 
defined. 

We will also consider processes for whichf(x,  t IXo) dx is the probability 
that the random variable X ( t )  lies within (x, x + dx) without ever having 
crossed x = + ~: (~: /> 0) in time (0, t), given X(0) = Xo. This case is of inter- 
est, for instance, in the study of largest deviations of  the random variable 
from equilibrium. All definitions given so far can be suitably modified to 
cover this situation. We define the random variable 

Y( t )  - max{lX(~)], 0 ~< ~ ~< t} (12) 

as the greatest excursion of the random variable X from zero in the time 
interval (0, t). The appropriate cumulative distribution function for this 
problem is 

F(~:, t[Xo) ~ dxf(x, t]Xo) (13) 
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The probabilistic definitions in Eqs. (2b) and (4) hold here with F(t) as de- 
fined in Eq. (12) and T(s given by 

T(~) - min{rlX(~) = _+ ~} (14) 

Equations (5)-(9) and (11) remain unchanged except for the replacement 
r ~ - ~ in the lower limits of  integration. In place of Eq. (10) we now have 

f; '! fo Y,(t[Xo) =- d~ ~"W(~, t o) = n d~ ~:~-~[1 - F(~:, tlXo)] (15) 

With F(~:, t Ix0) defined in (13), the quantities Yl(t [Xo) and Yz(t) are now mean 
extrema; Tl(~]Xo) and T~(f) are mean first passage times to x = + ~:. It 
should be noted that in the frequently occurring situations in which F(~:, t) is 
an even function of ~:, the moments T,(~:) and Y~(t) here are identical with the 
moments T,(~) and Z,(t) discussed earlier with a reflecting boundary at 

r = 0 .  
We restrict our discussion to Markov processes in continuous time. We 

believe that many of our conclusions are valid for a large class of  master 
equations of the form 

f dx' K(x, x')f(x', t lXo) (16) (a/at)f(x, t[Xo) 

where K(x, x') is the transition rate from state x' to state x. However, we will 
concern ourselves only with a special case of Eq. (16), namely the Fokker-  
Planck equation 

~ f ( x ,  -m~(x)f(x, + [m2(x)f(x, t [Xo)] (17) tlxo) 

with the initial condition f(x, 01xo) = 3(x - Xo) and appropriate boundary 
conditions to be discussed in Section 4. 

3: RESULTS FOR I N D E P E N D E N T  R A N D O M  V A R I A B L E S  

Since it is one of the objectives of this paper to compare the results for 
extreme value distributions of Markov processes with those for independent 
random variables, we collect here the relevant results for the latter case. C1'2'12) 
The statistics of extremes for independent random variables are traditionally 
dealt with in terms of variables defined for discrete times. We will thus state 
results in terms of processes in discrete time and then take limits to continuous 
time where appropriate. 

Let X1, )(2 ..... Xn be n sequential observations of a process. The X~ are 
taken to be identically and continuously distributed independent random 
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variables. Let Z(n) be a new random variable defined by 

Z(n) = max{Xm, 1 ~< m ~< n} (18) 

in analogy with Eq. (1). In further analogy with the equations in Section 2 we 
can define probabilities and probability densities such as, for example, 

r ( f ,  n) - Prob{Z(n) < f} (19) 

[cf. Eq.(7)] and 

Re(f, n) df  = [(8/Sf)F(f, n)] df  = Prob{~: < Z(n) < f + dr} (20) 

[cf. Eq. (8)]. The moments can then be determined as in Section 2. Here the 
probabilities and probability densities are independent of  the initial condition 
since we are dealing with independent random variables. 

Let P(x) be the cumulative distribution function for each x~ and p(x) be 
its probability density function: 

P(x) - Prob{X < x} (21) 

p(x) - (d/dx)P(x) (22) 

The function P(x) [or p(x)] is all that is needed to determine every property of  
the process. Thus, for instance, the probability F( f ,  n) that the maximum of 
n observations is below f is equal to the probability that each of the X~, 
i = 1 .. . . .  n, is less than f so that 

F( f ,  n) = [P(f)]" (23) 

from which it follows that 

Re(f, n) = n[P(f ) ]" -  lp(f) (24) 

Moments can also be given immediately. Let At be the time between observa- 
tions and let t = n At be the time of  the nth observation. Time is introduced 
here so that comparison with continuous time processes can be made later; 
we could of  course continue our discussion in terms of "obse rva t ion"  or 
"s tep  number"  and never introduce time. The mean first passage time to 
x = ~: [cf. Eq. (11)] is now given by the infinite series 

TI(~) = At{[1 -- P(f) ]  + 2e(~:)[1 - P(f) ]  + 3P2(f)[1 - P(f)]  + ...} 

At 
- 1 - P ( f )  ( 2 5 )  

For the independent process we define an upcrossing rate a(f) so that 
a(f) At is the probability that the process crosses the level x = f f rom below 
in time At. Then 

)t(f) At = 1 -- P(~:) (26) 
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and the probabi l i ty  F(~, t) tha t  the process stays below ~: th roughou t  the 
t ime t = n At can, instead o f  Eq. (23), be writ ten as 

F(~:, t) = [1 - A(~) At]" (27) 

In the limit o f  m a n y  observat ions  such that  n -+  0% At --~ 0, n At = t, 

F(~:, t) - +  e -A(~)t (28) 

In  this limit, the first passage t ime momen t s  are then given by [cf. Eq. (11)] 

T.(~:) = "!/~"(~) (29) 

and the mean  m a x i m a  are [cf. Eq. (10)] 

d~ ~"-  111 - e -a(r (30) Z, ( t )  = r" + n. 

The results of  Eqs. (28) and (29), summarized as 

F(~, t) -+ e-Url (~) (31) 

are characteristic of  independent processes. The fo rm of  ~(~:) or  TI(~) of  course 
depends  on the par t icular  process one is considering, i.e., on P(~). 

Equat ions  (28), (29), and  (31) also hold with some changes in definitions 
when one considers first arrival at  x = + ~:. In place of  Eq. (21) one now has 

P(x)  - Prob{IX, [ < x} (32) 

The  quant i ty  ~(~)At  is the probabi l i ty  tha t  the process crosses the level 
x = ~: f rom below, or the level x = - ~: f rom above,  in t ime At. The  momen t s  
Y.( t )  now are 

~ o o  

Y,( t )  = n I d~ ~"-1[1 - e -a(~)t] (33) 
d 0 

Depending  on the fo rm of  the cumulat ive distr ibution funct ion of  
Eq. (21), and hence of  the mean  first passage t ime TI(~), one obtains in the 
limit as t -+  ~ (equivalent to n -+  oo) one of  the three famil iar  stable asymp-  
totic distr ibutions of  F(~:, t). (~2'~a) The mos t  familiar  o f  the three, known as 
the asympto t ic  distr ibution of  the exponential  class, (~4) is 

l im F(~:, t) ~ e x p [ - e x p ( - Z ) ]  (34) 
t--* cO 

with 

Z - c~.(~: - / 3 . )  (35) 

and a, ,  ft, defined by the relations 

e(/3.) 1 1 dP(x)  x=a. . . . .  a ,  = n (36) 
n '  
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This asymptotic distribution holds for a wide class of  probability density 
functions p(x) for which, as x -+ 0% 

P"(x) P"(x) P""(x) 
P ' ( x )  P " ( x )  ~ P " ( x )  . . . .  (37) 

Exponential and Gaussian density functions are members of  this class. The 
quantity fin is the expected extreme value of  X and becomes equal to the most 
probable extreme value when n ---> oo. The quantity c~ n is a measure of  the 
variation of  ft, with n. The mean first passage time to x = ~: corresponding to 
the asymptotic distribution (34) is 

Tz(~:) ~ {1 - e x p [ - e x p ( - Z ) ] }  -~ ~ e x p Z  for large Z (38) 
At 

It  has been shown (4,5) that in the limit ~: --> o% t -+ 0% the distribution 
F(~:, t) for Markov processes tends to the asymptotic independent random 
variable form, Eqs. (28) and (29). We will show in this paper by detailed 
analysis of  some specific Markov processes that first passage time and ex- 
treme value distributions and moments  are given to a very good approxima- 
tion by the independent variable formulas also for finite times and finite 
boundaries. The criteria for this agreement and the errors involved will be 
discussed in detail in the next few sections. 

4. S O L U T I O N S  OF THE F O K K E R - P L A N C K  E Q U A T I O N  
W I T H  B O U N D A R I E S  

In this section we formulate the solution of the Fokker-Planck equa- 
tion 

~ f ( x ,  t[Xo) 

= 8x --ml(x)f(x, t[Xo) + -~ -~x [m2(x)f(x, t ]Xo)] (39) 

in the presence of boundaries. In Eq. (39) the coefficients rn~(x) and m2(x) 
are given by the conditional expectation values of  the change AX of the 
random variable X in time At: 

E [ A X [ X ( t )  = x] = m l ( x )  A t  + o (A t )  

E [ ( Z x X ) 2 l Y ( t )  = x] = m2(x) At + o (A t )  

E [ ( A X ) r [ X ( t )  = x] = o(At ) ,  r >i 2 

(4o) 



226 K. Lindenberg, K. E. Shuler, J. Freeman, and T. J. Lie 

The probability density also satisfies the backward Kolmogorov equation 

~ f ( x ,  t[ Xo) 

= ml(Xo) -~xof(X, t lx0) + ~ m2(xo) ~xo2f(x, t lxo) (41) 

There exists a large literature dealing with equations of  the form of 
Eq. (39). Most  of  the literature can roughly be divided into three (overlapping) 
categories. (15-~7~.~ One category ~8,~B'16~ deals with the Ornstein-Uhlenbeck 
(OU) process [ml(x) = -tzx,  rn2(x) -- 2D, ~ and D constant] as a descrip- 
tion of Brownian motion, where the velocity distribution of Brownian 
particles is the distribution of interest. 6 The OU equation is solved, but not 
for extreme value distributions, and only specialized boundary conditions are 
considered. The second category ~3-7'17-22~ deals with first passage time or 
extreme value distributions of  diffusion processes. In this group are the 
papers that are concerned with formal rather than detailed solutions of  Eq. 
(39) with general boundary conditions and with asymptotic properties of  
these distributions. Finally, there are many papers concerned with specific 
applications that involve various particular forms of Eq. (39), for which we 
only give a few typical references. (l~ Of  all these many papers only the 
work on the Fokker-Planck equation described in Refs. 4-6 deals with the 
problem of the asymptotic equivalence of the extremum properties of  the 
FP equation and independent random variable processes. The recent numeri- 
cal work of Keilson and Ross (26) on passage time distributions for the OU 
process is also related to the calculations presented here. 

A number of  different mathematical techniques have been used to solve 
Eq. (39) and to find properties related to f (x ,  t Ix0). The two most common 
ones are Laplace transforms ~8'~9'2~ and eigenfunction expansionsJ 4,2~ 
The former are inconvenient for numerical work because of  difficult inverse 
transforms that must be performed, and become tractable only for certain 
specialized boundary conditions. We therefore chose the method of eigen- 
function expansions. 

Equation (39) is a parabolic partial differential equation whose solution 
can be expressed as the eigenfunction expansion 

f (x ,  t lx0) = ~ p(x) U~(x)U~(xo) e_a~ t (42) 
k=0 N/r 

5 References 15-27 are by no means a complete list, particularly with regard to applica- 
tions. We limit ourselves to some representative examples. 

6 We show in Appendix A that the OU process is equivalent to a stationary autoregressive 
process of first order (in the terminology of time series analysis) under the assumption 
of continuous time and delta correlated Gaussian noise. 
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Here the weight function p(x) is the equilibrium solution of the Fokker-  
Planck equation (39) with or without reflecting boundaries, but without 
absorbing boundaries, 

p(x) = m2(x) exp___ dx' ~ j (43) 

with h(a) determined by the normalization condition 

f o~ p(x) = (44) dx 1 
O, 

The constant a is left undefined at this point, and will be chosen later to 
conform to the particular boundary conditions to be considered. The eigen- 
functions Uk and eigenvalues Ak satisfy the differential equation 

l m2(x) d2 Uk(x) dUk(x) dx-----g-- + ml(x)--dT-x + AkUk(x) = 0 (45) 

In addition, two boundary conditions for Uk(x) must be specified. The 
normalization constants Nk also depend on the boundary conditions. To 
deduce some properties of the eigenvalues hk, it is convenient to rewrite Eq. 
(45) in the self-adjoint form 

a aV (x)] -~ ~ ] + akp(x)Uk(x) = 0 (46) 

where 

a(x) =- �89 (47) 

Since this equation is of the Sturm-Liouville type, the eigenvalues A~ are real 
and nondegenerate. For m2(x) > 0, which is required in order that the FP 
equation (39) describe a physical system, the roots are nonnegative and 

ho < A1 < A2 < "" (48) 

4.1 .  R e f l e c t i n g  B o u n d a r y  a t  x = r, A b s o r b i n g  B o u n d a r y  a t  x = 

We impose a reflecting boundary condition at x = r, where r may be 
finite or negative infinite. For definiteness we consider here maxima problems; 
for minima problems r is finite or positive infinite. The boundary condition is 

f~-f-~[m2--~(2x)f(x,t[Xo)] -rnl(x)f(x, tlXo)}x=r=O (49) 

for all t > 0. This condition ensures (provided ml and m2 are physically 
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reasonable) that  the process is conservative, i.e., for ~: = m 

io dxf(x,  t lXo ) -- 1 (50) 

The second boundary  condit ion is obtained directly f rom the definition o f  
f (x,  t [xo) dx given in Section 2 as the probabil i ty that  the r a n d o m  variable 
X(t) lies within (x, x + dx) without ever having crossed x = s e in time (0, t), 
given X(0) = Xo. We can thus impose the absorbing boundary  condit ion 

f(x, trxo)lx=e = 0 (51)  

It  should be stressed here that  the condit ion at x = ~: does not necessarily 
imply the presence of a physical boundary. I t  simply represents the value ~: o f  x 
at which we " w a t c h "  for the first passage, or crossing, o f  the r andom 
variable X(t). The initial value Xo of  X(t) is bounded  by r ~< Xo < ~. 

For  these boundary  condit ions we take a = r as the lower limit for the 
normalizat ion equat ion (44). The normalizat ion constants  Nk in Eq. (42) are 
given by 

8k,mN~ = dx p(x) gl~(x) gm(x ) (52) 

The boundary  condit ions on the eigenfunctions are 

dUk(x) x =r p(x) ----dU-x = 0 (53) 

p(f)Uk(~) = 0 (54) 

4 . 2 .  A b s o r b i n g  B o u n d a r i e s  a t  x = + 

We now consider the case o f  symmetric (about  x = 0) absorbing 
boundaries at x -- + ~. The boundary  condit ions are 

f(x, t ixo) l .=  ~e = 0 (55) 

and the normalizat ion constants N~ are 

8k.mNk = dx p(x) Uk(x) Urn(X) (56) 

with a = - o o  in Eqs. (43) and (44). The boundary  conditions on the eigen- 
functions are 

p( + ~) Uk( + ~) = 0 (57) 
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4.3. First Passage Times 

To obtain first passage times for  the boundary  condit ions considered 
above we utilize the backward  K o l m o g o r o v  equat ion (41). The first passage 
time moments  T,(~:[xo) satisfy the differential difference equations, obtained 
f rom Eq. (41), 

To(~lXo) = 1 

1 d2T,@lXo) dT,~(flXo) nT,~_ l(~:]x0) (58) 
m2(xo) ~ + ml(xo) dxo - 

n = 1 ,2 , . . .  

with appropriate  boundary  conditions. (~v'27) For  first passage to x = ~: with 
a reflecting boundary  at x = r, the boundary  conditions on T, are 

z.(r = 0 (59) 

d 
dx---; ZX lxo)lxo=T = 0 (60) 

For  first passage to x = + ~,7 

T,@lXo)lxo=.~ = 0 (61) 

Rewriting Eq. (58) in self-adjoint form and integrating twice yields 

f'd ( z T,(~lxo) = xo =(z)J~ nT"-I(~IY)P(Y) dy (62) 

with c = r for boundaries at x = r, ~ (case 4.1), and c = 0 for boundaries  
at x = _+ ~ (case 4.2). 

To obtain the mean first passage time Tl(f)  for the initial distribution 
~7(xo) = p(x = Xo), we multiply Eq. (62), with n = 1, by p(Xo) and integrate 
between the boundaries.  With boundaries at r and f, 

T,(O = f )  [x(z) dz (63) 

where 

X(Z) =- p(y) dy (64) 

7 In the interest of simplicity, when dealing with two absorbing boundaries we will 
henceforth assume that ml(x) is odd and rn2(x) is even. 
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With boundaries at + ~, 

(~ x2(z) 
TI(~) = j_e ~(z) dz (65) 

Equation (63) reduces to Eq. (65) when r = 0, as noted earlier. 

4.4. Asymptotic Results 

We now present asymptotic results for the cumulative distribution 
functions F(s t Ixo) and F(~:, t), the first passage time moments T,(~:), and 
the extremum moments Z,(t) and Y,(t) for the Fokker-Planck equation 
discussed above. It is useful to define new functions Ak(~:) and B~(s by 

F(~, tlXo ) = ~ Ak(~)U~(xo)e-~k t (66) 
k = 0  

F(~, t) = ~ B~(~)e-~k t (67) 
k = 0  

from which it follows that [see Eqs. (2a), (13), and (42)] 

l / f  
A~(f) N'~(~) dx p(x)Uk(x) (68) 

with b = r or - ~ ,  depending upon the nature of the boundaries. We con- 
sider in this paper only initial probability densities ~7(x) that are identical with 
the equilibrium weight function p(x) defined in Eq. (43). It then follows that 

Bk(~) = Ak(~) dx Uk(x)p(x) = Nk(~)Ak2(~) (69) 

4.4.1. Cumulative Distribution Functions. For large ~:, ;~0(~) -> 0. With 
the proper choice of normalization, Uo(xo) -+ 1 for x0 << ~:, and N0(~:) --> 1. 
In these limits, indicated by the symbol ~ ,  with one reflecting and one ab- 
sorbing boundary it follows from Eqs. (68) and (69) that 

Ao(~:) ~ dx p(x) = 1 - dx p(x) (70) 

and 

Bo(~) ,,~ [ ~ d x  p(x)]2 = [ 1 -  ~~ dx p(x)l 2 

With absorbing boundaries at x = + ~: one finds 

Ao(~) ~ dx  p(x) = 1 - 2 dx  o(x)  

(71) 

(72) 
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and 

B o ( f ) ~  d x o ( x  = 1 - 2  d x o ( x  (73) 

It now follows from Eqs. (66) and (67), for large ~ and t, independently of 
boundary conditions and initial conditions, that 

F(~, t lXo) ,,~ F(~, t) ~, e-ao (~)* (74) 

a result which has been derived previously. (4-7) 
Since Bk(~:) /> 0 for all k and ~: [cf. Eq. (69)] while A~(~:)Uk(xo) may be 

positive or negative, one can be more specific about the approach to asymp- 
totic behavior of F(~:, t) than one can for F(~:, t [Xo). From the initial condition 

F(r t = O) = ak(~) = dx  p(x) -= e(r (75) 
k = 0  

and Eqs. (48) and (67) it follows that for all r and t 

Bo(~)e -~~ <~ F(~, t) <<. e(~:)e -a~ (76) 

Hence Eqs. (71), (73), and (75) imply that, f o r  all times t, 

F(r t) ~ e -a~ (77) 

for r sufficiently large, so that 

f ~ p(x) dx  << 1 (78a) 

It should be noted that the condition (78a) implies 

B0(~:) - e(~) ~ 1 (78b) 

from which (77) follows immediately. 
The relations (74) and (77) are identical in form with F(~, t) for in- 

dependent random variables as given in Eq. (28). It is in this sense that the 
extremum properties of Markov processes approach those of  independent 
processes, even for finite values of the variables. For the Markov process, as 
is the case for independent random variables, the specific form of Ao(~:) 
depends on the details of  the process under consideration. 

4.4.2. First Passage Time Moments. From Eqs. (11) and (67) it follows 
that the first passage time moments are given by 

T,~(~) = n! ~ Bk(~) (79) 
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Asymptotically, when Eqs. (77) and (78a) are applicable, this reduces to 

Tn(~) ~- n!/)to"(~) (80) 

which is identical to the result of Eq. (29) for independent random variables. 
In particular, Ao(~) is again the reciprocal of the mean first passage time to 
or + ~, depending upon the boundary conditions. It should be noted that for 
fixed ~:, Eq. (80) is more accurate as the order n of the moment increases since 
the ratio of the (k + 1)th to the kth term in the sum (79) decreases with 
increasing n. This is a consequence of the fact that the accuracy of the ap- 
proximation (77) improves for fixed ~: as t increases. This is an important 
observation for both Markov and independent random variables since the 
mean first passage time by itself is a very inaccurate measure of  the time 
dependence of any process with an exponential cumulative distribution of  the 
form (77). 

Indeed, in the asymptotic limits where (77) and hence (80) are valid, the 
dispersion of the mean first passage time is unity, i.e., 

lim {[T2(~) - T12(~)]/T12(~)} 112 = 1 (81) 

The utility of  these results [Eq. (80) et seq.] lies in the simplicity with 
which one can calculate Ao(~) ~ 1/TI(~) from Eq. (63) or Eq. (65). This in 
turn permits one to obtain very readily the asymptotic distribution function 
(74) and (77). 

4.4.3. Extremum Moments. It is more difficult to make general state- 
ments about the asymptotic behavior of extremum moments than of first 
passage time moments. The latter involve integrations over time of a function 
with a simple time dependence which is known for all t. On the other hand, it 
does not seem possible to establish an equation for F(~:, t) analogous to 
Eq. (77), i.e., one involving ~: only via Ao(~), valid for  all ~. Even if such a 
relation were to exist, it would be necessary to determine the analytic form of 
Ao(~) for the specific process under consideration in order to carry out the 
required integration over ~. 

It is nevertheless possible to conclude that for t ~> to, with to defined 
below, the mean maximum and higher moments are approximately given by 

J: Z , ( t )  ~ r" + n d~ ~:"-1[I - e-% (r (82) 

i.e., that for t ~> to, the distribution F(~:, t) in Eq. (10) can be replaced by the 
asymptotic form exp[-,~o(~:)t] averaged over the initial distribution p(xo). 
The time tc is given by the relation 

to ~- Tl(~:o) ~- 1/,Xo(~:o) (83) 
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where ~:o is the smallest value of ~ for which the condition (78a) holds. We 
assume here that ho(f) is a monotonically nonincreasing function of ~:, which 
would appear to be true in physically interesting cases. Equation (82) can be 
justified as follows. If  t ~> to, then for ~: << ~:o, it follows from the definition of  
F(f ,  t) in Eq. (7) that F(~:, t)<< 1. Therefore F(~:, t) makes a negligible 
contribution to the integrand f"- l [1  - F(s e, t)] of Eq. (10). The detailed 
form of F(~:, t) in this region of integration is thus unimportant. It is only 
when s e >~ fo that the form of  F(~:, t) is important. With fo defined in Eq. 
(83), Eqs. (76) and (77) then allow us to replace F(~:, t) with its asymptotic 
form. Hence if t >~ to, it is again sufficient to know only ho@ ) ~ I/T1@) to 
obtain the mean maximum and higher moments. It should be noted that for 
fixed t ~ to, the first moment Z~(t) obtained from the asymptotic form (82) is 
expected to be more accurate than the higher moments Z,(t) ,  n i> 2. This is 
because the largest contributions to Z~(t) come from small values of ~ where 
e x p [ -  ho(~:)t] << 1, so that errors introduced through use of the asymptotic 
form are less important than in the evaluation of the higher moments. It 
should also be observed that for large t the mean maximum Zl(t) is a good 
measure of the distribution of maxima. It can readily be shown via Eq. (82) 
that the dispersion of  the maximum Z~(t) tends to zero, i.e., 

lim {[Z2(t) - Z~2(t)]/Z~2(t)} ~12 = 0 (84) 
t---~ oO 

This is in marked contrast to the mean first passage time T~(~:), which, as 
shown by its dispersion [Eq. (81)], is not a good measure for the distribution 
of first passage times in the limit as s e -+ oo. 

The asymptotic approximations to the extremum moments Y,(t) for 
t ~> tc are given by Eq. (82) with r = 0. 

5. THE O R N S T E I N - U H L E N B E C K  E Q U A T I O N  

In order to make some progress beyond the above formalism, it is 
necessary to consider some particular Fokker-Planck equation. For our first 
example we turn to the Ornstein-Uhlenbeck (OU) equation (s~ 

= ~ [tzxf(x,t,Xo) + D ~--~f(x. t,Xo)] (85) ~f(x ,  t[Xo) ~x 

where the general coefficients ml(x) and m2(x) of the FP equation (39) now 
take the form rn~(x) = -tLx and rn2(x) = 2D with/~ and D constant. After 
defining the dimensionless variables 

~t --> ~- (86) 

(tz/2D)~/2x -+ y (87) 
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we can rewrite the eigenfunction equation (45) as 

d 2 Ug(y) dUg(y) 2A k Ug(y) 0 (88) 
2Y T + = dy = 

where the eigenvalues Ak of Eq. (88) are dimensionless ones related to those 
of  Eq. (45) by ag --> ag//,. All variables and functions from here on are under- 
stood to be in dimensionless form, even when the same symbols are used for 
them as in earlier sections. The weight function p(y) normalized with respect 
to y is 

2 e x p ( - y  2) (89) 
P(Y) = ~/~ 1 - err a 

where the value of a depends on the boundary conditions. 
We now consider the solution for each type of boundary condition 

separately. 

5.1.  R e f l e c t i n g  B o u n d a r y  a t  y = r, A b s o r b i n g  B o u n d a r y  a t  y = 

The solutions of  the eigenfunction equation (88) with boundary condi- 
tions (53) and (54) are combinations of  confluent hypergeometric functions(~a): 

( A~ 1 ) 2AkryM(I-�89189189 (90) 
Ug(y) = M - - f , ~ ,  y2 + M(�89 - �89 �89 r 2) 

The eigenvalues are obtained numerically from the boundary condition (51) 
as will be discussed below. Our choice of normalization makes the lowest 
eigenfunction Uo(y) -+ 1 for any finite y as ~: -+ oo. 

Equation (90) simplifies in a number of special cases. When r --~ - m the 
eigenfunctions reduce to (28) 

1 2 21"(�89189 , . [ 1  hk 3 2 
Uk(y) = M ( - ~ ,  -~, y ) +  p-(-(_Th-- ~ YJv" t'~ - T '  ~'Y ) (91) 

where P(y) is the gamma function. For the special case r ~ - m  and ~ = 0 
the eigenfunctions are the odd Hermite polynomials, Ug(y) = Hag + I(Y), and 
the eigenvalues are the odd positive integers, hg = 2k + 1. In this case the 
full probability density funct ionf(y ,  r[ Y0) can be written in closed form as {29) 

f (y ,  rIYo) = [~'(1 - exp -2 r ) ] - l J2{exp  
(y yoe-,) 2 

1 - e - 2 ~  

(y + 
- e x p  ] - - ~  J (92) 

with - o o  < yo < 0. The cumulative distribution function is 

- yo e- ~ 
F(~: = 0, ~-Iyo) = erf(1 _ e-2~)~/2 (93) 
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I f  r - +  -Go  and ~:-+ o% the eigenfunctions are all the Hermi te  polynomials ,  
Uk(y) = Hk(y), and the eigenvalues are the nonnegat ive integers, ),k = k. (28~ 
The probabi l i ty  density funct ion in this case is (29~ 

f ( y ,  r l y o ) =  {~r[1 - (exp -27)1} -~I2 exp (Y - Y~ 
1 - -  e - 2 ~  

(94) 

and the cumulat ive distr ibution function F(~: ~ oo, ~]Yo) is o f  course unity. 
When  r = 0, the second te rm on the r.h.s, o f  Eq. (90) vanishes. I f  in this 

case ~: -+  o% the eigenfunctions are the even Hermi te  polynomials ,  Uk(y) = 
H2k(y), and the eigenvalues are the even nonnegat ive integers, A~ = 2k. The 
probabi l i ty  density function is as in (94) with -Yo  replacing Yo, and the 
cumulat ive distr ibution funct ion is again unity. 

5.2.  A b s o r b i n g  B o u n d a r i e s  at y = _+ 

The solutions of  Eq. (88) with bounda ry  condit ions (57) are either even 
or odd  functions of  y:  

1 1 2 U2~(y) = M(-~A2k ,  z, y ), k = 0, 1, 2 . . . .  (95a) 
1 U2~+ I(Y) = yM(�89 - ~A2~ + 1, }, y2), k = 0, 1, 2 . . . .  (95b) 

Again Uo(y) ---> 1 as ~: --> oo. The eigenvalues are obta ined f rom the condit ions 

U2k(~) -- U2k+l(~) = 0 (96) 

The odd eigenfunctions do not  contr ibute  to the cumulat ive distr ibution 
funct ion F(~:, z) with p(y) as the initial distribution, and they also do not  
contr ibute  to F( ( ,  z[Yo = 0). When  s e ~ - 0 %  the eigenfunctions and eigen- 
values are the same as those of  the r--> - o %  ~:-+ oo case. 

Expressions for  the mean first passage t ime TI(~:) in terms of  the auxiliary 
function X(z) of  Eq. (64) can readily be evaluated for the equil ibrium weight 
funct ion p(y) of  Eq. (89). They are 

TI(~) - 1 - -~r f r  dy (exp y2)(er fy  - e r f r )  2 (97) 

for a single absorb ing  boundary ,  and 

TI(~) = ~/Tr dy (exp y2) erf2 y (98) 

for  two absorbing  boundaries .  Note  tha t  Eq. (98) is identical to Eq. (97) with 
r = 0. When  ~ is very large, asymptot ic  expansion of  Eq. (97) yields ~ 

TI(~:) ~ ~/Tr(1 - erf  r ) (exp ~:2)/2~: (99) 



236 K. Lindenberg,  K. E. Shuler,  d. Freeman, and T. J. Lie 

5.3. Results and Discussion 

To obtain the desired results for more general boundary conditions on 
the approach of the Markov properties to those of independent random 
variables it is necessary to calculate numerically the eigenfunction U~(y) and 
the eigenvalues ;~k. These calculations were performed on a Burroughs 6700 

Table I. First Four Eigenvalues for the  OU Process w i th  Symmetr ic  Absorb-  
ing Boundaries at _+~ 

ao(~) al(~) a2(~) a3(D 

0.5 0.445113E + 01 0.192745E + 02 0.439521E + 02 0.784969E + 02 

0.6 0.295044E + 01 0.132586E + 02 0.303985E § 02 0.543889E § 02 

0.7 0.204971E + 01 0.964021E + 01 0.222360E + 02 0.398627E + 02 

0.8 0.146932E + 01 0.730094E + 01 0.169484E + 02 0.304452E + 02 

0.9 0.107570E + 01 0.570653E + 01 0.133337E + 02 0.239993E + 02 

1.0 0.798460E + 00 0.457558E + 01 0.107588E + 02 0.193997E + 02 

1.1 0.597622E + 00 0.374838E + 01 0.886452E § 01 0.160077E + 02 

1.2 0.449103E + 00 0.312881E + 01 0.743473E + 01 0.134391E + 02 

1.3 0.337658E + 00 0.265619E + 01 0.633313E + 01 0.114517E + 02 

1.4 0.253228E + 00 0.229061E § 01 0.547028E + 01 0.988641E + 01 

1.5 0.188932E + 00 0.200498E + 01 0.478549E + 01 0.863542E + 01 

1.6 0.139902E + 00 0.178027E + 01 0.423645E + 01 0.762354E + O1 

1.7 0.102597E + 00 0.160282E + 01 0.379285E + 01 0.679701E + 01 

1.8 0.743660E - 01 0.146254E + 01 0.343257E § 01 0.611662E § 01 

1.9 0.531815E - 01 0.135183E + 01 0.313908E + 01 0.555318E § 01 

2.0 0.374612E - 01 0.126482E + 01 0.289979E + 01 0.508464E + 01 

2.1 0.259540E - 01 0.119689E + 01 0.270497E + 01 0.469404E + 01 

2.2 0.176634E - 01 0 . I14434E + 01 0.254692E + 01 0.436817E + 01 

2.3 0.117959E - 01 0.110416E + 01 0.241944E + 01 0.409659E + 01 

2.4 0.772308E - 02 0.107388E + 01 0.231744E + 01 0.387090E + 01 

2.5 0.495410E - 02 0.105142E + 01 0.223669E + 01 0.368426E + 01 

2.6 0.311200E - 02 0.103508E + 01 0.217356E + 01 0.353099E § 01 

2.7 0.191369E - 02 0.102342E + 01 0.212496E + 01 0.340626E § 01 

2.8 0.115180E - 02 0.101529E + 01 0.208819E + 01 0.330593E § 01 

2.9 0.678437E - 03 0.100976E + 01 0.206092E § 01 0.322634E § 01 

3.0 0.391083E - 03 0.100608E § 01 0.204113E § 01 0.316422E § 01 

3.1 0.220632E - 03 0.100370E § 01 0.202711E § 01 0.311665E + 01 

3.2 0.121826E - 03 0.100220E + 01 0.201743E § 01 0.308098E + 01 
3.3 0.658439E - 04 0.100128E + 01 0.201093E + 01 0.305487E + 01 

3.4 0.348370E - 04 0.100072E + 01 0.200667E § 01 0.303624E + 01 

3.5 0.180448E - 04 0.100040E § 01 0.200397E + 01 0.302330E + 01 

3.6 0.915147E - 05 0.100022E + 01 0.200230E + 01 0.301458E + 01 

3.7 0.454455E -- 05 0.100011E § 01 0.200130E + 01 0.300887E + 01 
3.8 0.221000E - 05 0.100006E § 01 0.200072E + 01 0.300525E § 01 

3.9 0.105251E - 05 0.100003E + 01 0.200038E + O1 0.300302E § 01 
4.0 0.490869E -- 06 0.100002E § 01 0.200020E + 01 0.300169E + 01 
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Table II. First Four Eigenvalues for the OU 
r = - l , y = ~  

Process with Boundaries at 

0.1 0.147597E + 01 0.972635E + 01 0.260467E + 02 0.505187E + 02 
0.2 0.122134E + 01 0.817342E + 01 0.218882E + 02 0.424516E + 02 
0.3 0.101603E + 01 0.696016E + 01 0.186473E + 02 0.361691E + 02 
0.4 0.847714E + 00 0.599455E + 01 0.160732E + 02 0.311816E + 02 
0.5 0.707917E + 00 0.521405E + 01 0.139955E + 02 0.271570E + 02 
0.6 0.590656E + 00 0.457490E + 01 0.122951E + 02 0.238633E + 02 
0.7 0.491601E + 00 0.404575E + 01 0.108870E + 02 0.211348E + 02 
0.8 0.407545E + 00 0.360364E + 01 0.970891E + 01 0.188505E + 02 
0.9 0.336059E + 00 0.323145E + 01 0.871463E + 01 0.169201E + 02 
1.0 0.275266E + 00 0.291621E + 01 0.786905E + 01 0.152755E + 02 
1.1 0.223672E + 00 0.264793E + 01 0.714525E + 01 0.138643E + 02 
1.2 0.180066E + 00 0.241882E 4- 01 0.652226E + 01 0.126457E + 02 
1.3 0.143434E + 00 0.222273E 4- 01 0.598356E + 01 0.115876E + 02 
1.4 0.112905E + 00 0.205478E + 01 0.551603E + 01 0.106645E + 02 
1.5 0.877131E - 01 0.191099E + 01 0.510907E + 01 0.985584E + 01 
1.6 0.671669E - 01 0.178814E + 01 0.475413E + 01 0.914487E + 01 
1.7 0.506356E - 01 0.168356E + 01 0.444421E + 01 0.851801E + 01 
1.8 0.375368E - 01 0.159498E + 01 0.417352E + 01 0.796401E + 01 
1.9 0.273328E -- 01 0.152049E + 01 0.393728E + 01 0.747357E + 01 
2.0 0.195302E - 01 0.145840E + 01 0.373149E + 01 0.703891E + 01 
2.1 0.136819E - 01 0.140722E + 01 0.355276E + 01 0.665351E + 01 
2.2 0.939049E - 02 0.136557E + 01 0.339823E + 01 0.631187E + 01 
2.3 0.631072E - 02 0.133220E + 01 0.326540E + 01 0.600932E + 01 
2.4 0.415080E - 02 0.130591E + 01 0.315210E + 01 0.574190E + 01 
2.5 0.267130E - 02 0.128561E + 01 0.305636E + 01 0.550620E + 01 
2.6 0.168182E - 02 0.127027E + 01 0.297640E + 01 0.529928E + 01 
2.7 0A03579E - 02 0.125893E 4- 01 0.291053E + 01 0.511858E + 01 
2.8 0 . 6 2 4 0 4 1 E -  03 0.125076E + 01 0.285715E + 01 0.496186E + 01 
2.9 0.367814E - 03 0.124503E + 01 0.281467E + 01 0.482708E + 01 
3.0 0.212110E - 03 0.124111E + 01 0.278158E + 01 0.471238E + 01 
3.1 0.119693E - 03 0.123851E + 01 0.275641E + 01 0.461600E + 01 
3.2 0.661000E - 04 0.123682E + 01 0.273773E + 01 0.453624E + 01 
3.3 0.357286E - 04 0.123576E + 01 0.272426E + 01 0.447139E + 01 
3.4 0.189044E - 04 0.123512E + 01 0.271481E + 01 0.441975E + 01 
3.5 0.979233E - 05 0.123473E + 01 0.270839E + 01 0.437956E + 01 
3.6 0.496628E - 05 0.123451E + 01 0.270415E + 01 0.434910E + 01 
3.7 0.246628E - 05 0.123438E + 01 0.270145E + 01 0.432666E + 01 
3.8 0.119931E - 05 0.123431E + 01 0.269977E + 01 0.431062E + 01 
3.9 0.571186E - 06 0.123427E + 01 0.269876E + 01 0.429953E + 01 
4.0 0.266407E - 06 0.123425E -4- 01 0.269818E + 01 0.429211E + 01 
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computer and the plotting was done on a CDC 3600 computer. In Tables 
I - IV  and Figs. 3-7 we present a representative sample of  the extensive calcu- 
lations that  were carried out. The complete set of calculations is available 
upon request. 

The quantities of  main interest are the eigenvalues, since all subsequent 
results depend upon them. Since p(y) is nonzero for all finite y, the search for 
the eigenvalues reduces to finding the zeros of  the eigenfunctions of  Sections 
5.1 and 5.2. A "bisecting search" method was used to obtain the first four 
eigenvalues as a function of the absorbing boundary ~:, for various values of  
the reflecting boundary r and for symmetric absorbing boundaries. The 
results for some representative cases are given in Tables I - I I I .  I t  should be 
noted that the ratio 2,0(~:)/A1(s decreases rapidly with increasing ~:. For ~: = 1, 
this ratio is already of O(10-~) for all the boundary conditions studied by us. 
It  is of  course this rapid separation of the lowest and next eigenvalue with 
increasing ~ which causes the asymptotic results to hold to a very good 
approximation for finite values of the boundary value ~. It  is also important  

to note (see Table IV) that the condition (78a), i.e., a = f~  p(x) dx << 1, 

holds for all values of  s >/ 1. 
Results for the cumulative probability distribution F(~:, t) of Eq. (67) are 

presented in Table IV for reflecting boundaries at r = 0, r = - 1 ,  and 
r = - 0 %  for various times 10r. As can be seen from the equations and dis- 
cussions in Sections 5.1 and 5.2, the cumulative distribution function F(~:, t) 
for r = 0, with an absorbing boundary at y = ~:, is identical to F(~:, t) for 
symmetric absorbing boundaries at y = + ~:. The entries in the first row of 
Table IV thus pertain both to the case y = r = 0, y = ~ and to the case 
y = + f. The results presented in Table IV and all subsequent ones discussed 
here were obtained by using the first four eigenvalues 2~0(s through 1a(~). 

The asymptotic cumulative distributions F(~:, t ) - +  exp[-A0(~)r],  Eq. 
(77), are also presented for comparison in Table IV. The "exac t "  distribu- 
tions, obtained with the use of our eigenvalues ~0 through A3, and the asymp- 
totic distributions exp[-A0(~)r],  are quite close in value (to within 15-20%) 
already for ~ ~ 1, regardless of the boundary conditions. For f 1> 3 they are 
essentially indistinguishable. 8 

Results for the mean first passage time and mean extrema are shown in 
Figs. 1-6. Figures 1-3 display the natural logarithm of the mean first passage 
time TI(~:) for symmetric absorbing boundaries as discussed in Section 5.2 
and for reflecting boundaries with r = - 1  and r = -oo ,  as discussed in 
Section 5.1. The solid curves are the exact mean first passage times obtained 
from numerical integration of Eq. (97). It  is of interest to note that the mean 

8 It should be noted that the values of F(1, ~-) may have a nonnegligible error for short 
times due to the truncation of the expansion for F(~:, t) after four terms. 
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Fig. 1. OU process. Mean first passage time to symmetric absorbing boundaries at + ~:. 
Exact result, -- .  Independent random variable approximation, - -. Asymptotic expansion 
of exact result, .... 

first passage times obtained f rom the first four  terms of  Eq. (79) agree closely 
with these exact results. The dashed curves are the independent  r andom 
variable approximat ion 1/A0(~:) ~ TI(~). For  ~ >/ 1 this approximat ion gives 
results which are extremely close to the exact TI(~:) in all cases. The dot ted 
curves represent the asymptot ic  expansion (99) o f  Eq. (97). It  is rather a poor  
approximat ion for small values o f  ~:, as expected, but  also becomes quite 
accurate for  f > 1. 

We have also evaluated the dispersion o f  the mean first passage time 
(T2 - TI2)U2/T~. It  is approximately unity for all values o f  ~:. This extends to 
small values o f  ~ the asymptot ic  result (81) on the dispersion o f  the mean first 
passage time for  the general Fokker -P lanck  equation. This is an interesting 
and disturbing result. F r o m  it one learns that  the mean first passage time 
TI(~:) is not  a " s h a r p "  measure, and one needs really to calculate the full first 
passage time distribution, Eq. (9). 

The mean extremum Y~(r) as a function o f  time is shown in Fig. 4. By 
extremum, we mean here the greatest excursion of  the r andom variable Y 
above or below y = 0. Figures 5 and 6 display the mean maximum ZI(T) as a 
funct ion o f  time for processes with reflecting boundaries at r = - 1  and 
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( 

Fig. 2. OU process. Mean first passage time to f with reflecting boundary at r = - 1. 
Exact result, -- .  Independent random variable approximation, - -. Asymptotic expansion 
of exact result, .... 

r = - o %  where by maximum we refer to the greatest excursion of  the 
r andom variable Y above y = 0. The dashed curves are the approximate first 
moments  ZI(r )  computed  f rom Eq. (82). The solid curves are the exact 
results, averaged over the initial conditions, obtained f rom Eqs. (10) and (15) 
for n = 1. The dot ted curves are the differences between the exact and ap- 
proximate results. I t  will be noted that  these differences are very small at all 
times ~- and essentially zero for all times z > Zc, in agreement with our  
criterion for the validity o f  (82). F rom the definition o f  rc in terms of  '~0(~:0), 
Eq. (83), one can see f rom Tables I - I I I  that  rc is o f  order unity. 

I t  is interesting to compare  this value o f  rc with the characteristic time 
for  decay of  correlations in the unbounded  O U  process. It  follows directly 
f rom Eq. (85) in terms of  the dimensionless variables o f  Eqs. (86) and (87) 
that  in the absence o f  boundaries  

(y( r )y(O))  - Yo dy yf(y, "lYo) = Yo 2e-~ 
c o  

(lOO) 

The characteristic dimensionless decay time, i.e., the time required for the 
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Fig. 3. OU process. Mean first passage time to f with reflecting boundary at r = -oo. 
Exact result, -- .  Independent random variable approximation, - -. Asymptotic expansion 
of exact result, -... 

correlations to decay to 1/e o f  the initial value, is thus unity. The values o f  ~-o 
found here imply the physically reasonable result that  mean extrema and 
maxima of  the O U  process are well approximated by independent r andom 
variable results at times when the correlations o f  the unbounded  O U  process 
have decayed to about  1/e o f  their initial value. Analogous  relations for more  
general Markov  processes still need to be developed. 

We have also calculated the dispersion o f  the mean maximum, 
( Z 2  - Z12)lI2/Z1.  For  small values of  ~- it is o f  O(1); as ~ -+  ~ the dispersion 
approaches zero, as expected f rom Eq. (84). In contrast  to the relation be- 
tween the mean first passage time and the first passage time distribution, the 
mean maximum is thus a useful measure o f  the distribution o f  maxima,  
particularly at large times ~. It  is interesting and impor tant  to note that  one 
can therefore make a meaningful calculation, i.e., one with a small dispersion, 
of  the most  probable maximum excursion of  the space r andom variable for 
any time interval (0, ~-), but  that  the calculation o f  the mean time required for 
the space variable to reach an extreme value for the first time is not  very 
useful, due to the large dispersion o f  the mean first passage time. 
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Fig. 4. OU process. Mean extremum. Exact result, --.  Independent random variable 
approximation, --. Difference, .-.. 

Finally, we wish to point out that the units in this discussion are scaled 
dimensionless ones. The absolute values of  the time t and the variable x for 
which independent random variable behavior can be assumed depend on the 
parameters/~ and D of the OU equation, according to Eqs. (86) and (87). 

6. H A R M O N I C  O S C I L L A T O R  D I S S O C I A T I O N  

A specific example to which the developments of Section 4 can readily be 
applied is the harmonic oscillator dissociation model of  Montroll and Shuler 
in the high-temperature approximation/9-11~ 

Consider an ensemble of  harmonic oscillators in contact with a heat bath 
at temperature T; the fundamental frequency of each oscillator is u. Let 

0 =_ hv/kT (101) 

In the high-temperature limit, 0 << 1, one can approximate the discrete 
energy levels of  each oscillator by a continuum of energies denoted, in units 
of  hu, by the dimensionless variable x. The ground state energy is x = O; it is 
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Fig. 5. OU process. Mean maximum with a reflecting boundary at r = - 1 .  Exact 
result, - - .  Independent random variable approximation, - -. Difference, -.-. 

a s sumed  m) tha t  if  the  energy of  an osci l la tor  reaches or  exceeds x = ~, the 
osci l la tor  dissociates  irreversibly.  The  p robab i l i ty  tha t  an osci l la tor  has no t  
d issocia ted at  t ime t then obeys a F o k k e r - P l a n c k  equa t ion  with a reflecting 
b o u n d a r y  at  x = 0 and  an absorb ing  b o u n d a r y  at  x = ~. The coefficients in 
Eq. (17) are  <1~ 

m l ( x )  = 1 - Ox (102) 

m2(x)  = 2x (103) 

The  t ime t is expressed in units of  1/klo, where klo is the col l is ional  deact iva-  
t ion  rate  o f  the first excited state to the g round  state. 

The eigenfunct ions for  this F o k k e r - P l a n c k  equa t ion  are confluent  
hypergeomet r ic  funct ions,  (1~ 

Vk(x)  = M ( - A ~ / O ,  1, Ox), k = O, 1, 2, ... (104) 

where the A~ are de te rmined  by the absorb ing  b o u n d a r y  condi t ion  Uk(~) = 0. 
W h e n  ~ - *  0% the eigenfunct ions are the Laguerre  polynomials ,  Uk(x) = 
Lk(Ox), with eigenvalues A k = kO. The weight funct ion for  this p rob lem,  
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Fig. 6. OU process. Mean maximum with a reflecting boundary at r = - ~ .  Exact 
result, -- .  Independent random variable approximation, - -. Difference, -.-. 

obtained f rom Eq. (43), is 

p ( x )  = Oe - ~  (105) 

The mean first passage time to x = $ with r = 0 (i.e., the mean time for 
dissociation to occur) is given by Eq. (63) as 

1 (or (1 - e - ~ )  2 e ~ 
T I ( ~ )  = - 0 2 o  d z  r > (106) z e  - Z ~ 02 ~ 

In  the limit ~:-+ 0% it then follows f rom Eqs. (77) and (80), according to 
which Tt(~:) ~- [ho(~:)] -1, that  

F(~:, t) N exp{-- 02~:[exp( - 0~)]t} (107) 

where F(~:, t) is the probabil i ty that  TI(~) < t. The results in Eqs. (106) and 
(107) are identical to those obtained from the rigorous discrete energy level 
t reatment  o f  the Montrol l -Shuler  model  (9) in the high-temperature limit as 
N + 1 = ~ : ~ o o  [Eq. (VII.6) of  Ref. 8]. I t  should be noted that  these 
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Fig. 7. Harmonic oscillator dissociation. Mean first passage time to ~. Exact result, -- .  
Independent random variable approximation, --. Asymptotic expansion of exact 
result, -... 

results were obtained here with much less effort than in the original papers, 
Refs. 9 and 10. 

Figure 7 shows a comparison of  the exact and approximate mean first 
passage times. The ordinate is in units o f  OTI(~) and the abscissa is in units o f  
0~. The solid curve is the exact mean first passage time obtained from the 
exact expression in Eq. (106), the dashed curve is 0/Ao(~:) evaluated numeri- 
cally, and the dotted curve is the asymptotic expansion o f  the exact result o f  
Eq. (106). Beyond 0~: _ 3, we have TI(~) ~ 1/Ao(~:) to within 11~o. For 

0~: = 3, we have ~ p(x) dx = 0.05 << 1, so that the criterion of  Eq. (78a) for 

the validity o f  Eqs. (77) and (80) is well fulfilled. 

A P P E N D I X  A 

We illustrate here how a particular Fokker-Planck equation, namely the 
Ornstein-Uhlenbeck (OU) process, can readily be obtained by starting with 
a model  o f  a Markov process defined only for the discrete times t. = n At. 
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Our starting point is the so-called stationary autoregressive process of 
first order 

X(t,+l) = ~(At)X(t~) + A(t~+l) (A.1) 

where X is a random variable and A is a "noise"  term. Equation (A.1) can 
be rewritten as 

X(t,  + At) = a(At)X(t,) + A(t, + At) (A.2) 

We now go over to continuous time, so that t~ becomes the continuous 
variable t. This permits us to replace the noise term with 

Ji t + M; 
A(t, + At) -+ d ( t )  dt (A.3) 

t 

Dividing (A.2) [with (A.3)] by At and taking the limit At ~ 0 yields 

dX(t)dt z~,~01im [[a(At)At-- 1] X(t) + ~/(t) (A.4) 

Expansion of c~(At) in a Taylor series about At = 0, 

d,( At ) 
~(At) = 1 + d(At) At=o At + O[(At) 2] (A.5) 

and substitution of (A.5) into (A.4) then gives, to order At, 

dX(t)/dt = - tzX(t )  + d ( t )  (A.6) 

with 

d~(at) 
/x = ~ At=o (A.7) 

Equation (A.6) will be recognized as the Langevin equation. If  we now assume 
that sO(t) corresponds to delta-correlated Gaussian noise with 

( d ( t ) )  = 0, ( d ( t ) d ( t ' ) )  = 2D S(t - t') (A.8) 

where D is a constant, then it is easy to show by well-known methods that the 
Langevin equation (A.6) integrates to the Fokker-Planck equation (17) with 
ml(x) = - t zx  and m2(x)= 2D. The stationary autoregressive process of 
first order, Eq. (A.1), is thus equivalent to the OU process [Eq. (85)] under 
the assumption of continuous time and delta-correlated Gaussian noise. 

A P P E N D I X  B 

We present here some of the equations used in the numerical computa- 
tions for the OU process. 
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A useful function for these calculations is 

Vk(y) - (8/Oh~)U~(y) (B.1) 

where the right-hand side represents partial differentiation of the eigen- 
functions of Sections 5.1 and 5.2 for fixed y. Some of the quantities that enter 
the numerical computations can be simply expressed with the use of this 
auxiliary function. 

Normalization constants Nk 
Equation (88) in self-adjoint form is 

dU~(y)] d a(y) + hkp(y)Uk(y ) = 0 (B.2) 
dy dy J 

Differentiation of this equation with respect to h~ yields an inhomogeneous 
differential equation for Vk(y): 

d [ a ( Y ) ~ ]  + --p(y)Uk(y) (B.3) 

Multiplying Eqs. (B.2) and (B.3) by Vk(y) and Uk(y), respectively, subtracting 
them, integrating the difference from b to ~:, and using the appropriate 
boundary conditions, we obtain 

(a(~)V~(~)U~'(~), for b = r 

N k ( ~ ) = ~ ' "  " "  "'t.Za(~)Vk(~)U~,(~), f o r b =  -~: 
(B.4) 

where the prime indicates differentiation with respect to y. 

CoeJ~ cient s .4 k 
Integration of Eq. (B.2) between the boundaries gives 

fb r = -- [a(~)U~'(~:) - a(b)Uk'(b)]/hk(O (B.5) p(y) U~(y) 

Substitution of Eqs. (B.4) and (B.5) into Eq. (87) results in 

Ak(~ r = -- [hk(~:) Vk(~:)]-i (B.6) 
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